S620 - Introduction To Statistical Theory - Homework 6
 Enrique Areyan
 April 10, 2014

1. Show that the Poisson distribution forms an exponential family.

Solution: Let $X \sim \operatorname{Pois}(\theta)$. The pmf of X is $f_{X}(x ; \theta)=e^{-\theta} \frac{\theta^{x}}{x!}$. We want to show that this pmf can be written as $f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}$. For a Poisson distribution, let $c(\theta)=e^{-\theta}, h(x)=\frac{1}{x!}, k=1$ and $\pi_{1}(\theta)=\log (\theta), \tau_{1}(x)=x$. Then:
$f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}=c(\theta) h(x) \exp \left\{\pi_{1}(\theta) \tau_{1}(x)\right\}=e^{-\theta} \frac{1}{x!} \exp \{x \log (\theta)\}=e^{-\theta} \frac{\theta^{x}}{x!}=f_{X}(x ; \theta)$
Showing that the Poisson distribution forms an exponential family.
2. Show that the Binomial distribution forms an exponential family.

Solution: Let $X \sim \operatorname{Bin}(n, \theta)$, for known n and unknown θ. The pmf of X is $f_{X}(x ; \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$. We want to show that this pmf can be written as $f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}$. For a Binomial distribution, let $c(\theta)=1, h(x)=\binom{n}{x}, k=2$ and $\pi_{1}(\theta)=\log (\theta), \tau_{1}(x)=x ; \pi_{2}(\theta)=\log (1-\theta), \tau_{2}(x)=n-x$. Then:

$$
\begin{gathered}
f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}=c(\theta) h(x) \exp \left\{\pi_{1}(\theta) \tau_{1}(x)+\pi_{2}(\theta) \tau_{2}(x)\right\}=1 \cdot\binom{n}{x} \cdot \exp \{x \log (\theta)+(n-x) \log (1-\theta)\} \\
=\binom{n}{x} \exp \left\{\log \left(\theta^{x}\right)\right\} \exp \left\{\log \left[(1-\theta)^{n-x}\right]\right\}=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}=f_{X}(x ; \theta)
\end{gathered}
$$

Showing that the Binomial distribution forms an exponential family.
3. Show that the Geometric distribution forms an exponential family.

Solution: Let $X \sim G e o(\theta)$. The pmf of X is $f_{X}(x ; \theta)=\theta(1-\theta)^{x-1}$. We want to show that this pmf can be written as $f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}$. For a Geometric distribution, let $c(\theta)=\theta, h(x)=1, k=1$ and $\pi_{1}(\theta)=\log (1-\theta), \tau_{1}(x)=x-1$. Then:
$f(x ; \theta)=c(\theta) h(x) \exp \left\{\sum_{i=1}^{k} \pi_{i}(\theta) \tau_{i}(x)\right\}=c(\theta) h(x) \exp \left\{\pi_{1}(\theta) \tau_{1}(x)\right\}=\theta \cdot 1 \cdot \exp \{(x-1) \log (1-\theta)\}=\theta(1-\theta)^{x-1}=f_{X}(x ; \theta)$
Showing that the Geometric distribution forms an exponential family.

For the next three problems, we want to show that (G, \circ) is a group, where $G=\left\{g_{\theta}: \theta \in \Theta=\mathbb{R}^{p}\right\}$, such that $g_{\theta}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$, and \circ denotes function composition. The particular action of g_{θ} is different in each case.
4. Show that location families form a transformation group.

Solution: Let $g_{\theta} \in G$ be defined as $g_{\theta}(x)=x+\theta$. Let us check all properties of a group:
(a) Closure: Let $g_{\theta_{1}}, g_{\theta_{2}} \in G$. Then,

$$
\left(g_{\theta_{1}} \circ g_{\theta_{2}}\right)(x)=g_{\theta_{1}}\left(g_{\theta_{2}}(x)\right)=g_{\theta_{1}}\left(x+\theta_{2}\right)=\left(x+\theta_{2}\right)+\theta_{1}=x+\left(\theta_{1}+\theta_{2}\right)=g_{\theta_{1}+\theta_{2}}(x)
$$

This is of the correct form, i.e., $g_{\theta_{1}+\theta_{2}} \in G$, and so \circ is a binary operation on G.
(b) Associativity: In general, composition of functions from a set to itself is an associative operation. In this case, let $g_{\theta_{1}}, g_{\theta_{2}}, g_{\theta_{3}} \in G$. Then:
$g_{\theta_{1}} \circ\left(g_{\theta_{2}} \circ g_{\theta_{3}}\right)=\left(g_{\theta_{1}} \circ\left(g_{\theta_{2}} \circ g_{\theta_{3}}\right)\right)(x)=g_{\theta_{1}}\left(g_{\theta_{2}}\left(g_{\theta_{3}}(x)\right)\right)=g_{\theta_{1}}\left(g_{\theta_{2}}\left(x+\theta_{3}\right)\right)=g_{\theta_{1}}\left(x+\theta_{3}+\theta_{2}\right)=x+\theta_{3}+\theta_{2}+\theta_{1}=\left(\left(x+\theta_{3}\right)+\theta_{2}\right)+\theta_{1}$
$=g_{\theta_{1}}\left(g_{\theta_{2}}\left(g_{\theta_{3}}(x)\right)\right)=\left(\left(g_{\theta_{1}} \circ g_{\theta_{2}}\right) \circ g_{\theta_{3}}\right)(x)=\left(g_{\theta_{1}} \circ g_{\theta_{2}}\right) \circ g_{\theta_{3}}$, thus, the binary operation is associative on G.
(c) Existence of identity element: Let us check that $g_{\overrightarrow{0}} \in G$ is the identity element. Let $g_{\theta} \in G$. Then:
$\left(g_{\theta} \circ g_{\overrightarrow{0}}\right)(x)=g_{\theta}\left(g_{\overrightarrow{0}}(x)\right)=g_{\theta}(x+0)=g_{\theta}(x)=x+\theta=(x+\theta)+0=g_{\overrightarrow{0}}(x+\theta)=g_{\overrightarrow{0}}\left(g_{\theta}(x)\right)=\left(g_{\overrightarrow{0}} \circ g_{\theta}\right)(x)$
Hence, $g_{\theta} \circ g_{\overrightarrow{0}}=g_{\overrightarrow{0}} \circ g_{\theta}=g_{\theta}$.
(d) Existence of inverse elements: Let $g_{\theta} \in G$ be given. Let us check that $g_{-\theta} \in G$ is its inverse:

$$
\left(g_{\theta} \circ g_{-\theta}\right)(x)=g_{\theta}\left(g_{-\theta}(x)\right)=g_{\theta}(x+(-\theta))=(x+(-\theta))+\theta=x+0=g_{\overrightarrow{0}}=(x+\theta)+(-\theta)=g_{-\theta}(x+\theta)=g_{-\theta}\left(g_{\theta}(x)\right)=\left(g_{-\theta} \circ g_{\theta}\right)(x)
$$

Hence, $g_{\theta} \circ g_{-\theta}=g_{-\theta} \circ g_{\theta}=g_{\overrightarrow{0}}$
5. Show that scale families form a transformation group.

Solution: Let $g_{\theta} \in G$ be defined as $g_{\theta}(x)=\theta x$ [in this case $\Theta=(0, \infty)$]. Let us check:
(a) Closure: Let $g_{\theta_{1}}, g_{\theta_{2}} \in G$. Then,

$$
\left(g_{\theta_{1}} \circ g_{\theta_{2}}\right)(x)=g_{\theta_{1}}\left(g_{\theta_{2}}(x)\right)=g_{\theta_{1}}\left(\theta_{2} x\right)=\theta_{1}\left(\theta_{2} x\right)=\left(\theta_{1} \theta_{2}\right) x=g_{\theta_{1} \cdot \theta_{2}}(x)
$$

This is of the correct form, i.e., $g_{\theta_{1} \cdot \theta_{2}} \in G$, and so \circ is a binary operation on G.
(b) Associativity: The argument is essentially the same as in 4.
(c) Existence of identity element: Let us check that $g_{1} \in G$ is the identity element. Let $g_{\theta} \in G$. Then:

$$
\left(g_{\theta} \circ g_{1}\right)(x)=g_{\theta}\left(g_{1}(x)\right)=g_{\theta}(1 \cdot x)=g_{\theta}(x)=\theta x=1 \cdot(\theta x)=g_{1}(\theta x)=g_{1}\left(g_{\theta}(x)\right)=\left(g_{1} \circ g_{\theta}\right)(x)
$$

Hence, $g_{\theta} \circ g_{1}=g_{1} \circ g_{\theta}=g_{\theta}$.
(d) Existence of inverse elements: Let $g_{\theta} \in G$ be given. Let us check that $g_{\frac{1}{\theta}} \in G$ is its inverse:

$$
\left(g_{\theta} \circ g_{\frac{1}{\theta}}\right)(x)=g_{\theta}\left(g_{\frac{1}{\theta}}(x)\right)=g_{\theta}\left(\frac{1}{\theta} x\right)=\theta\left(\frac{1}{\theta} x\right)=1 \cdot x=g_{1}(x)=\frac{1}{\theta}(\theta x)=g_{\frac{1}{\theta}}(\theta x)=g_{\frac{1}{\theta}}\left(g_{\theta}(x)\right)=\left(g_{\frac{1}{\theta}} \circ g_{\theta}\right)(x)
$$

Hence, $g_{\theta} \circ g_{\frac{1}{\theta}}=g_{\frac{1}{\theta}} \circ g_{\theta}=g_{1}$
6. Show that location-scale families form a transformation group.

Solution: Let $g_{\theta} \in G$ be defined as $g_{\theta}(x)=\eta+\tau x$ [in this case $g_{\theta}: \mathbb{R} \rightarrow \mathbb{R}$, and $\Theta=(-\infty, \infty) \times(0, \infty)$, and thus, $\theta=(\eta, \tau)]$. Then:
(a) Closure: Let $g_{\theta_{1}}, g_{\theta_{2}} \in G$, where $\theta_{1}=\left(\eta_{1}, \tau_{1}\right)$ and $\theta_{2}=\left(\eta_{2}, \tau_{2}\right)$. Then,
$\left(g_{\theta_{1}} \circ g_{\theta_{2}}\right)(x)=g_{\theta_{1}}\left(g_{\theta_{2}}(x)\right)=g_{\theta_{1}}\left(\eta_{2}+\tau_{2} x\right)=\eta_{1}+\tau_{1}\left(\eta_{2}+\tau_{2} x\right)=\eta_{1}+\tau_{1} \eta_{2}+\tau_{1} \tau_{2} x=\left(\eta_{1}+\tau_{1} \eta_{2}\right)+\left(\tau_{1} \tau_{2}\right) x=g_{\theta}(x)$
This is of the correct form, i.e., $g_{\theta} \in G$, where $\theta=\left(\eta_{1}+\tau_{1} \eta_{2}, \tau_{1} \tau_{2}\right)$ and so \circ is a binary operation on G.
Note that $\tau_{1} \tau_{2} \in(0, \infty)$ since both τ_{1} and τ_{2} are in $(0, \infty)$
(b) Associativity: The argument is essentially the same as in 4.
(c) Existence of identity element: Let us check that $g_{e} \in G$, where $e=(0,1)$ is the identity element.

Let $g_{\theta} \in G$. Then:
$\left(g_{\theta} \circ g_{e}\right)(x)=g_{\theta}\left(g_{e}(x)\right)=g_{\theta}(0+1 \cdot x)=g_{\theta}(x)=\eta+\tau x=0+1 \cdot(\eta+\tau x)=g_{e}(\eta+\tau x)=g_{e}\left(g_{\theta}(x)\right)=\left(g_{e} \circ g_{\theta}\right)(x)$
Hence, $g_{\theta} \circ g_{e}=g_{e} \circ g_{\theta}=g_{\theta}$.
(d) Existence of inverse elements: Let $g_{\theta} \in G$ be given, where $\theta=(\eta, \tau)$. Let us check that $g_{\theta^{-1}} \in G$, where $\theta^{-1}=\left(-\frac{\eta}{\tau}, \frac{1}{\tau}\right)$, is its inverse. [Note that division by τ is well defined because $\tau \in(0, \infty)$]. Then:

$$
\begin{gathered}
\left(g_{\theta} \circ g_{\theta^{-1}}\right)(x)=g_{\theta}\left(g_{\theta-1}(x)\right)=g_{\theta}\left(-\frac{\eta}{\tau}+\frac{1}{\tau} x\right)=\eta+\tau\left(-\frac{\eta}{\tau}+\frac{1}{\tau} x\right)=\eta+(-\eta)+\frac{\tau}{\tau} x=0+1 \cdot x=g_{e}(x) \\
\left(g_{\theta^{-1}} \circ g_{\theta}\right)(x)=g_{\theta^{-1}}\left(g_{\theta}(x)\right)=g_{\theta^{-1}}(\eta+\tau x)=\left(-\frac{\eta}{\tau}\right)+\frac{1}{\tau}(\eta+\tau x)=\left(-\frac{\eta}{\tau}+\frac{\eta}{\tau}\right)+\frac{\tau}{\tau} x=0+1 \cdot x=g_{e}(x)
\end{gathered}
$$

Hence, $g_{\theta} \circ g_{\theta^{-1}}=g_{\theta^{-1}} \circ g_{\theta}=g_{e}$

